Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species.

Identifieur interne : 000171 ( Main/Exploration ); précédent : 000170; suivant : 000172

Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species.

Auteurs : Kayleigh G. Nielson [Canada] ; Samuel G. Woodman [Canada] ; Stewart B. Rood [Canada]

Source :

RBID : pubmed:32218607

Descripteurs français

English descriptors

Abstract

Oil pipelines are vulnerable at river crossings since floods can expose and rupture pipes, releasing oil that floats and coats floodplain vegetation. This study investigated the consequences of oil coatings on leaves of cottonwoods (riparian poplars), the predominant trees in floodplain woodlands around the Northern Hemisphere. The study compared conventional crude oil (CO) versus diluted bitumen (dilbit, DB), heavy oil originating from the Alberta oil sands; with petroleum jelly (PJ) as a reference. The treatments increased leaf surface temperatures (Tleaf) in narrowleaf and plains cottonwoods (Populus angustifolia, P. deltoides) and balsam poplars (P. balsamifera) (Control = 21.8°C, PJ = 23.7°C; CO = 26.2°C; DB = 28.1°C; Tair = 25°C). The leaf warming followed stomatal occlusion from the foliar coating, which would reduce transpiration and evaporative cooling, combined with increased solar warming with the darker oils. Tleaf varied across the three cottonwood species, with cooler, narrow, narrowleaf cottonwood leaves; intermediate plains cottonwood leaves; and warmer, darker, balsam poplar leaves (average Tleaf: narrowleaf = 23.8°C, plains = 24.3°C, and balsam = 26.7°C), with similar warming in each species following the different treatments. Across species and treatments, Tleaf was tightly correlated with foliar condition, which assessed turgor versus wilting of leaf blades and petioles, along with leaf necrosis and senescence (r2 = 0.980, narrowleaf; 0.998, plains; 0.852, balsam). This tight association indicates validity of both Tleaf and foliar condition as diagnostic measures. Crude oil and dilbit had similar foliar impacts, and for both, leaf abscission occurred within 2 to 3 weeks. Consequently, following an oil spill, remediation should commence quickly but extending vegetation removal beyond a few weeks would have limited benefit since the contaminated leaves would have abscised.

DOI: 10.1371/journal.pone.0230630
PubMed: 32218607
PubMed Central: PMC7100927


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species.</title>
<author>
<name sortKey="Nielson, Kayleigh G" sort="Nielson, Kayleigh G" uniqKey="Nielson K" first="Kayleigh G" last="Nielson">Kayleigh G. Nielson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Woodman, Samuel G" sort="Woodman, Samuel G" uniqKey="Woodman S" first="Samuel G" last="Woodman">Samuel G. Woodman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32218607</idno>
<idno type="pmid">32218607</idno>
<idno type="doi">10.1371/journal.pone.0230630</idno>
<idno type="pmc">PMC7100927</idno>
<idno type="wicri:Area/Main/Corpus">000373</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000373</idno>
<idno type="wicri:Area/Main/Curation">000373</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000373</idno>
<idno type="wicri:Area/Main/Exploration">000373</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species.</title>
<author>
<name sortKey="Nielson, Kayleigh G" sort="Nielson, Kayleigh G" uniqKey="Nielson K" first="Kayleigh G" last="Nielson">Kayleigh G. Nielson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Woodman, Samuel G" sort="Woodman, Samuel G" uniqKey="Woodman S" first="Samuel G" last="Woodman">Samuel G. Woodman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alberta (MeSH)</term>
<term>Floods (MeSH)</term>
<term>Hydrocarbons (chemistry)</term>
<term>Hydrocarbons (toxicity)</term>
<term>Linear Models (MeSH)</term>
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Petroleum (analysis)</term>
<term>Petroleum (toxicity)</term>
<term>Petroleum Pollution (MeSH)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Species Specificity (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alberta (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Hydrocarbures (composition chimique)</term>
<term>Hydrocarbures (toxicité)</term>
<term>Inondations (MeSH)</term>
<term>Microscopie électronique à balayage (MeSH)</term>
<term>Modèles linéaires (MeSH)</term>
<term>Pollution pétrolière (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (physiologie)</term>
<term>Pétrole (analyse)</term>
<term>Pétrole (toxicité)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Petroleum</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hydrocarbons</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Hydrocarbons</term>
<term>Petroleum</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Alberta</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Pétrole</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Hydrocarbures</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Hydrocarbures</term>
<term>Pétrole</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Floods</term>
<term>Linear Models</term>
<term>Microscopy, Electron, Scanning</term>
<term>Petroleum Pollution</term>
<term>Species Specificity</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alberta</term>
<term>Inondations</term>
<term>Microscopie électronique à balayage</term>
<term>Modèles linéaires</term>
<term>Pollution pétrolière</term>
<term>Spécificité d'espèce</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oil pipelines are vulnerable at river crossings since floods can expose and rupture pipes, releasing oil that floats and coats floodplain vegetation. This study investigated the consequences of oil coatings on leaves of cottonwoods (riparian poplars), the predominant trees in floodplain woodlands around the Northern Hemisphere. The study compared conventional crude oil (CO) versus diluted bitumen (dilbit, DB), heavy oil originating from the Alberta oil sands; with petroleum jelly (PJ) as a reference. The treatments increased leaf surface temperatures (Tleaf) in narrowleaf and plains cottonwoods (Populus angustifolia, P. deltoides) and balsam poplars (P. balsamifera) (Control = 21.8°C, PJ = 23.7°C; CO = 26.2°C; DB = 28.1°C; Tair = 25°C). The leaf warming followed stomatal occlusion from the foliar coating, which would reduce transpiration and evaporative cooling, combined with increased solar warming with the darker oils. Tleaf varied across the three cottonwood species, with cooler, narrow, narrowleaf cottonwood leaves; intermediate plains cottonwood leaves; and warmer, darker, balsam poplar leaves (average Tleaf: narrowleaf = 23.8°C, plains = 24.3°C, and balsam = 26.7°C), with similar warming in each species following the different treatments. Across species and treatments, Tleaf was tightly correlated with foliar condition, which assessed turgor versus wilting of leaf blades and petioles, along with leaf necrosis and senescence (r2 = 0.980, narrowleaf; 0.998, plains; 0.852, balsam). This tight association indicates validity of both Tleaf and foliar condition as diagnostic measures. Crude oil and dilbit had similar foliar impacts, and for both, leaf abscission occurred within 2 to 3 weeks. Consequently, following an oil spill, remediation should commence quickly but extending vegetation removal beyond a few weeks would have limited benefit since the contaminated leaves would have abscised.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32218607</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species.</ArticleTitle>
<Pagination>
<MedlinePgn>e0230630</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0230630</ELocationID>
<Abstract>
<AbstractText>Oil pipelines are vulnerable at river crossings since floods can expose and rupture pipes, releasing oil that floats and coats floodplain vegetation. This study investigated the consequences of oil coatings on leaves of cottonwoods (riparian poplars), the predominant trees in floodplain woodlands around the Northern Hemisphere. The study compared conventional crude oil (CO) versus diluted bitumen (dilbit, DB), heavy oil originating from the Alberta oil sands; with petroleum jelly (PJ) as a reference. The treatments increased leaf surface temperatures (Tleaf) in narrowleaf and plains cottonwoods (Populus angustifolia, P. deltoides) and balsam poplars (P. balsamifera) (Control = 21.8°C, PJ = 23.7°C; CO = 26.2°C; DB = 28.1°C; Tair = 25°C). The leaf warming followed stomatal occlusion from the foliar coating, which would reduce transpiration and evaporative cooling, combined with increased solar warming with the darker oils. Tleaf varied across the three cottonwood species, with cooler, narrow, narrowleaf cottonwood leaves; intermediate plains cottonwood leaves; and warmer, darker, balsam poplar leaves (average Tleaf: narrowleaf = 23.8°C, plains = 24.3°C, and balsam = 26.7°C), with similar warming in each species following the different treatments. Across species and treatments, Tleaf was tightly correlated with foliar condition, which assessed turgor versus wilting of leaf blades and petioles, along with leaf necrosis and senescence (r2 = 0.980, narrowleaf; 0.998, plains; 0.852, balsam). This tight association indicates validity of both Tleaf and foliar condition as diagnostic measures. Crude oil and dilbit had similar foliar impacts, and for both, leaf abscission occurred within 2 to 3 weeks. Consequently, following an oil spill, remediation should commence quickly but extending vegetation removal beyond a few weeks would have limited benefit since the contaminated leaves would have abscised.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nielson</LastName>
<ForeName>Kayleigh G</ForeName>
<Initials>KG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Woodman</LastName>
<ForeName>Samuel G</ForeName>
<Initials>SG</Initials>
<Identifier Source="ORCID">0000-0001-9725-5867</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rood</LastName>
<ForeName>Stewart B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">0000-0003-1340-1172</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006838">Hydrocarbons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010578">Petroleum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8052-42-4</RegistryNumber>
<NameOfSubstance UI="C006647">asphalt</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000416" MajorTopicYN="N" Type="Geographic">Alberta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055868" MajorTopicYN="N">Floods</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006838" MajorTopicYN="N">Hydrocarbons</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010578" MajorTopicYN="N">Petroleum</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059392" MajorTopicYN="Y">Petroleum Pollution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32218607</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0230630</ArticleId>
<ArticleId IdType="pii">PONE-D-19-30727</ArticleId>
<ArticleId IdType="pmc">PMC7100927</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2004;39(9):2465-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15478936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jun 1;38(6):789-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29509939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Sep;35(9):936-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Toxicol. 2015 Nov;35(11):1219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26153036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2016 Sep;216:361-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27299994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):563-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Nov;23(16):1113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Jan;165(1):31-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Apr;104(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20013353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2016 Jun 7;50(11):6091-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27176092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Nov;53(378):2249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Oct;64(13):3937-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2000 May;108(2):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15092943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1948 Oct;23(4):595-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16654187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22346-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2004 May;72(5):1006-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15266698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2001;112(3):483-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11291454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Feb;26(2):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Feb;40(2):237-248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28026874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Nov;70(5):1508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Nielson, Kayleigh G" sort="Nielson, Kayleigh G" uniqKey="Nielson K" first="Kayleigh G" last="Nielson">Kayleigh G. Nielson</name>
</noRegion>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<name sortKey="Woodman, Samuel G" sort="Woodman, Samuel G" uniqKey="Woodman S" first="Samuel G" last="Woodman">Samuel G. Woodman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000171 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000171 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32218607
   |texte=   Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32218607" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020